Harrowed sparrows and shrinking starlings

Posted by Sam Heggie-Gracie @SamHegGra

Birds are one of many taxa seen to be on the downslide globally, with 12% of all birds classified as threatened. Bird trends have been particularly well documented in Europe, and some of these studies have thrown up some interesting findings. In particular, it appears rarer birds are increasing in abundance, whilst the more common species are driving the brunt of the overall decline.

Spock’s famous adage “The needs of the many outweigh the needs of the few,” doesn’t normally apply in conservation, whereby common species are often overlooked in favour of protecting those that are rarer. It’s easy to take common species for granted. However, common species disproportionately influence the environment they live in as they form an especially integral part of the structure and function of their habitat. Commonality in ecology is (ironically) a rare trait, with only a few species lucky enough to have the right characteristics to multiply like nobody’s business and dominate an environment (think: humans). A decline of a once common species will be pretty bad news. In Europe, even the cherished, ever-present sparrows have taken a dive, as have starlings.

sparrowHouse sparrow (Image source: Fir0002/Flagstaffotos)

Some recent research has shown some of our own common birds such as tui may also be declining. Habitat destruction, invasive species and climate change pose threats to these birds, so it will be important to keep an eye on their populations.

By continuing to undertake informed bird-friendly actions (such as good bird feeding practices!), we can safeguard our inimitable native species from further loss. In terms of policy, a compact city as opposed to a sprawling one appears more favourable for bird communities, and this may be especially true for natives. Such city-scape planning alongside regular population monitoring may be increasingly required in order to mitigate biodiversity loss and assist both the many as well as the few.silvereyeSilvereye (Image source: Fir0002/Flagstaffotos)

Check out Josie’s endearing video on good feeding practices, and remember to keep a close eye on your cat this summer as baby birds begin to emerge!

N1qF4ytSkwb9gfQNFTejvhyrBfZZAtIMzrtb-MY7RRo

Sam Heggie-Gracie is an MSc student in the Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland. He is investigating the drivers of bird composition in cities. He is supervised by Margaret Stanley and Cheryl Krull (AUT).

 

Advertisements

Growing old with caterpillars

Posted by Zane McGrath

For the remainder of these summer months I will be searching far and wide for the kawakawa plant. It isn’t the odour emitted by its heart shaped leaves or berries I am attracted to, but the caterpillars hosted by the plant, which I will attempt to adopt and take back to their new home, the luxurious lab at Landcare Research. Although in highlighting the beauty of ecological research, and just to make things more confusing (see earlier posts by Sam and Carolina on ecological complexity), it is not the plant or the caterpillars that will be the main focus of my Masters research, but parasitoid wasps which emerge from the caterpillars.

DSC_0330

The kawakawa plant (top) and kawakawa caterpillar (bottom)

DSC_0327

Parasitoid wasps spend part of their life cycle within a host, such as a caterpillar, and basically eat their way out when ready to pupate, eventually killing the host. Fascinating or down right freaky (have a look for yourself in this video), parasitoid wasps have the ability to act as natural enemies for controlling agricultural pests. For my Masters research I will be focusing on whether Meteorus pulchricornis, a species accidentally introduced into New Zealand, is competing with native species for caterpillar hosts.

medium[1]

The culprit, Meteorus pulchricornis (Photo: iNaturalist.org) (top) and its cocoon hanging from a kawakawa plant, which is unique to the species (bottom)

DSC_0315

In order to understand this, the caterpillars I collect will be reared until they reach their fate. If I’m lucky, but the caterpillar isn’t, a parasitoid wasp will emerge.

This is where I must hone my husbandry skills. The caterpillars can grow considerably over the period of a month or so before pupating. They will be fed their favourite meal, a kawakawa leaf that is replaced every five to seven days. However, as a parent would say, the growing up process isn’t always a pretty sight. Their homes can become inundated in frass (caterpillar poo), and need I say the larger the caterpillar grows, the larger the frass… but hey, it’s all part of being a parent.

DSC_0383

Frass and a caterpillar

Zane McGrath is an MSc student in the Centre of Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland. He is supervised by Darren Ward and Graham Walker (Plant and Food Research, Auckland) examining parasitism by exotic species in native environments.

Potential threats on the horizon for urban ecosystems: the top 10

Posted by Margaret Stanley @mc_stanley1

In an earlier blog (What’s the Point of Urban Ecology?), I talked about the importance of urban ecosystems – both for connecting people with nature, and for their intrinsic values. Cities can be biodiversity hotspots!

Maximising biodiversity in the streets of Paris

Maximising biodiversity in the streets of Paris

There are the usual suspects that come to mind when we consider threats to urban biodiversity: human population increases, intensification, climate change, etc. But are there any new threats on the horizon that we should be looking out for in cities? With this in mind, we applied for funding for a horizon-scanning exercise to identify emerging threats in urban ecosystems (thanks CBB!). Horizon-scanning is a systematic search for issues that are not widely recognised – either in the research literature or in policy.

In January of this year, we brought together 12 participants from Australia, UK and New Zealand for the horizon scanning workshop. We based the workshop on the well-known conservation horizon scanning workshops led by Prof. Bill Sutherland. Before coming to our workshop, we used our professional networks to gather ‘emerging threats’ from colleagues in science, policy and management. During the workshop, we explored, debated and ranked the 137 potential threats that were suggested by the global experts.

Debating the issues during the horizon-scanning workshop

Debating the issues during the horizon-scanning workshop

The key to this exercise was to identify threats that were truly on the horizon, rather than one of the ‘usual suspects’. It was remarkably difficult to really pull out those ‘good grief’ moments as Prof. Kevin Gaston called them – the potential threats that truly surprised us. The workshop was a refreshing opportunity to do something we scientists rarely get an opportunity to do – delve into issues completely outside our knowledge set. Who would have thought we’d be trying to figure out what human ‘cremains’ are composed of? Or google-searching ‘self-healing concrete’?

The paper resulting from the workshop has been published in Frontiers in Ecology and the Environment. The final list of potential threats (see below) included advances in technology, as well as issues around how people are using green spaces. It is important to recognise that although we’ve identified potential threats associated with new technology, some of these new technologies also bring a range of environmental benefits (e.g. solar panels). The main purpose of horizon scanning is to identify potential threats early, so we can assess whether they really are a threat, and if so, mitigate the threat proactively. It’s possible that just ‘tweaking’ a piece of technology would reduce its impact on urban biota, while maintaining its effectiveness.

 So what’s next on the horizon?

Ecologists are often accused of being negative (or even “scare-mongering” to quote a journalist who interviewed me this week) – perhaps our next horizon-scan should search for emerging opportunities for urban ecosystems. That sounds like a much more inspiring workshop!

 In the meantime, we hope to inspire researchers to explore how much of a threat these 10 issues are, and to inspire policymakers and managers to look ahead to threats on the horizon.

 TOP 10 Potential threats:

Atlanta beltline

Maximising biodiversity in the streets of Paris

Health demands on greenspace: As more people are encouraged to use green urban spaces for exercise, these spaces can become highly maintained for people rather than wildlife; with more tracks, artificial lighting and fewer plants.

Figure 2bDigital replacement of nature: There is a risk that nature in cities could be replaced with digital equivalents of nature, such as images and sound recordings. This gives people some of the benefits of nature, but without the maintenance and messy side of nature, however it could lead to city dwellers undervaluing nature in their immediate environment.

 Scattered cremains (material resulting from cremation): There has been a growing trend for cremation as space for burial of human remains is at a premium. However, in some cities land for interring cremains has become very expensive and scattering cremains has become more culturally acceptable. Because of high levels of phosphate and calcium in cremains, there is a risk of polluting urban ecosystems and waterways.

 Figure 3cSpread of disease by urban cats: Globally, there are now more than 600 million pet cats, and the increase in pet cat ownership is resulting in the disease toxoplasma spilling over into wildlife populations, in urban areas as well as to species in more remote locations, such as the endangered Hector’s dolphin.

Figure 4aSwitch to LED lights: Cities across the globe are switching their lighting technology to LED lights. However, the whiter spectrum of LED lights overlaps with the visual systems of wildlife and can disrupt their physiology and behaviour.

Solar cities: Many cities are implementing city-wide solar panel installation programmes. However, solar panels can disrupt the behaviour and reproduction of animals that are attracted to the polarised light they produce.

 Nanotechnology: Nanoparticles (e.g. graphene) are now an increasing but invisible part of cities, found in everything from smartphones to clothing. However, there has been almost no research on the effects of these particles on animals, plants and entire ecosystems.

 Figure 4cSelf-healing concrete: This is a new concrete product infused with specialised bacteria is about to be commercialised. If use of this product becomes widespread, it could spell the end for the often unique biodiversity that currently manages to thrive in cracked concrete all around cities.

Energy efficient homes: Many countries are implementing large-scale retrofitting of buildings to make them more energy efficient. However, this effectively seals the building off from the outside, resulting in loss of breeding sites for wildlife such as bats and nesting birds.

Drones: The recent popularity of using drones (unmanned aerial vehicles) in cities is likely to result in issues for wildlife, such as nesting birds, which are particularly sensitive to stress and repeated aerial disturbance.

 Click here for the paper:

Stanley MC, Beggs JR, Bassett IE, Burns BR, Dirks KN, Jones DJ, Linklater WL, Macinnis-Ng C, Simcock R, Souter-Brown G, Trowsdale SA, Gaston KJ. (2015). Emerging threats in urban ecosystems: a horizon scanning exercise. Frontiers in Ecology & Environment, 2015 13(10): 553–560, doi:10.1890/150229

 Ecology Ngātahi members Jacqueline Beggs and Cate Macinnis-Ng were part of the Horizon-scanning exercise and are co-authors on the paper.

me2small Dr Margaret Stanley is a Senior Lecturer in Ecology, School of Biological Sciences, University of Auckland and is the programme director of the Masters in Biosecurity and Conservation. Her interests in terrestrial community ecology are diverse, but can be grouped into three main research strands: urban ecology; invasion ecology; and plant-animal interactions.

Bush mad in the city

Posted by Samantha Lincoln @slin247

Over the course of this year I have been undertaking intense field work across some of Auckland Councils public parks. Urban ecology is inherently strange; emerging sweat-soaked from a long day’s work, and carrying a small colony of beetles in your hair onto a main road whilst startling local dog walkers and being serenaded by Auckland Zoo’s primates. While not as idyllic as disappearing to the mountains for a week, urban ecology is incredibly important when most of our human population is urban. Connecting with nature is undeniably important for our wellbeing.

Auckland has hundreds of public parks of all sizes, both without and without maintained walking tracks as I have discovered. They are refuges for native species in the middle of our manicured city, but how well do we really look after these spaces? During my field work my volunteers and I have found a range of debris: backyard clippings spreading weeds, Victorian inkwells, a year’s supply of newspapers courtesy of a lazy paperboy, shelters built by those with nowhere else to turn (a growing issue in Auckland) and a pile of books featuring a bunny not often seen during pest control.

Live capture of a rat during a capture-recapture study

Live capture of a rat during a capture-recapture study

As Auckland city grows, more pressure is being placed on these biodiversity refuges and how we value and care for them becomes more important as was noted last month. Will we value and nurture these green spaces, or will they fail under the pressure? Will we continue to use them as personal rubbish dumps, or will we take interest in the other species that use these spaces? I will be a science advocate – we can all lend our voices. To me nothing beats the feeling of following a fantail nest from first cheeps to first awkward flight, as I make my daily visit to the rat trap at the tree’s base.

Sam Ln webSam Lincoln is an MSc student in the Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of  Auckland. She is trying to disentangle interactions between domestic cats and rats in urban environments. She is supervised by Margaret Stanley, John Innes and Al Glen.

Finding the sweet spot for ecological, social and economic values of urban greening

Posted by Jacqueline Beggs, Kate Irvine, Ian Mell, Margaret Stanley, Laurence Jones, Mike Dodd, Mark Goddard, Andy Moffat, Gina Cavan, Helen Rawlinson, Luciana Luna, Panteha Daie, Stefan van der Esch, Laila Almulla

Want to improve the value of your home, reduce your stress levels, save on air-conditioning in summer and encourage birds into your garden? Trees can provide all of that, and often the larger the tree the larger the benefits.

The value of urban trees and green-spaces are many. A recent symposium drew together a diverse range of practitioners, researchers, policy makers, and planners – from New Zealand, South Africa and Mexico, to USA and Europe. There is a voracious appetite for sharing ideas and knowledge linking together social, environmental and economic strands to build resilient cities. Finding the sweet spot that balances potentially competing demands is a challenge, so the opportunity to exchange ideas and resources was fruitful.

Some emerging strands:

  1. What are the social implications of greening cities? If adding trees increases property values, does this drive-out lower socio-economic groups? How can we make this more equitable so all sectors of community benefit? How do we best protect urban forests? Recent changes which removed blanket protection of urban trees in Auckland New Zealand potentially leaves socially deprived areas more vulnerable to losing trees. Detroit (Michigan, USA) was suggested as a city to watch as innovative, community based ventures turn urban collapse into urban renewal.

    Urban ‘development’ in Auckland (left) contrasts with urban renewal in Detroit (right)

    Urban ‘development’ in Auckland (left) contrasts with urban renewal in Detroit (right)

  2. How do we adequately measure less tangible benefits of urban green? Does it matter how frequently we visit? What contribution does the ecological quality or type of urban green make to our well-being?
    Don't wait until this state for a break. Drawn by Fritz Ahlefeldt

    Don’t wait until this state for a break. Drawn by Fritz Ahlefeldt

    While policy and practice currently emphasise physical and mental benefits, people using urban parks and riverscapes also report feeling calm, relaxed, or more emotionally attached to the green space after being there. In today’s pressured lifestyles, such greenspaces provide invaluable “timeout”. Watch out for publication of Kate Irvine’s fascinating research in this area.

  3. In times of austerity, we need to find new financial models for adding and maintaining urban green/open space. There are financial benefits: we know people are willing to pay more to live on a “green street”. Ian Mell’s research on blending practice and policy brought useful insights to better planning and implementation to improve the liveability of cities.
  4. There are many citizen science projects where people can help to collect data that can be used to study biodiversity in urban areas. For example, in Auckland NZ there is a project collecting data on the distribution and abundance of a large endemic wood pigeon, while the treezilla project aims to make a monster map of trees in Britain.
  5. Does new green infrastructure actually reduce biodiversity by replacing naturally rewilding areas with “manicured” green?
    The Atlanta Beltline converted disused railway tracks into 23-mile recreational greenway which is designed to integrate an evolving ecological landscape into the everyday lives of the city's residents.

    The Atlanta Beltline converted disused railway tracks into 23-mile recreational greenway which is designed to integrate an evolving ecological landscape into the everyday lives of the city’s residents.

    The Atlanta beltline was used as an example of an innovative funding model for greenspace, while at the same time there was concern that it had resulted in loss of biodiversity. But is this an acceptable trade-off in some urban locations where biodiversity aspirations are unrealistic? How are we to manage competing demands on our green spaces? Perhaps it is time for ecologists to move beyond advocating primarily for native trees to enhance biodiversity, but instead incorporating non-native species if they tolerate future climates and pests.

    The London Wetland Centre welcomes about one million visitors a year of which 50,000 are school children to learn about wildlife and conservation in urban areas.

    The London Wetland Centre welcomes about one million visitors a year of which 50,000 are school children to learn about wildlife and conservation in urban areas.

  6. Around the world there are many exciting urban greening initiatives we can all learn from. GRaBS provides some excellent case studies which share experience and good practice on how to integrate climate change adaptation into urban and town planning. In addition, London has an extraordinarily successful wetlands centre, Paris has brought in legislation for green roofs on all new industrial buildings, Portland (Oregon, USA) offers “treebates” to residents planting trees in their gardens, and Manchester has a growing number of beehives on urban buildings and four UK cities have set up an experiment to assess how best to improve cities for wild pollinators. What is your city doing? We’d love to hear new initiatives from other countries.

The authors of this article all participated in a symposium on restoring urban ecosystem function at the World Conference on Ecological Restoration held in Manchester 26 August 2015.

Holy sky glow Batman!

Posted by Ellery McNaughton @EJ_McNaughton

Dear Batman,

I have a bone to pick with you. Maybe you’ve been too busy fighting crime and/or Superman to notice that sky glow from artificial light sources is a global issue. Light emitted upwards from artificial sources is scattered by molecules in the atmosphere, creating a glow that is brighter than the natural night sky. Aside from making it harder to sneak around in your Bat-Plane, sky glow also reduces star visibility (and therefore sights like these), and has a myriad of potential impacts on the environment. It is for this reason that I find your use of the Bat-Signal downright irresponsible.

The Bat-Signal, aka extremely poor outdoor lighting practice

The Bat-Signal, a symbol of hope, fear, and excessive light pollution

You see Batman, when it comes to outdoor lighting there are three main ways to reduce sky glow. The first is to reduce light trespass into the night sky by shielding or directing the light source downwards. The second is to reduce the amount of light emitting into the night sky by dimming or switching off the light source. The third way is to reduce the scattering of light in the night sky by avoiding light sources that emit strongly in the blue part of the spectrum (as short wavelengths scatter more). Ideally these three methods should be used together. Props to you for somewhat shielding your light with a bat symbol, but I can’t help but feel that this is due to aesthetics, rather than good lighting practice.

While we're at it, does Wayne Manor really need that much outdoor lighting?

While we’re at it, does Wayne Manor really need that much outdoor lighting?

In short, your Bat-Signal is polluting the night sky with its bright, upward emitting white light. Don’t take my word for it, go ahead and measure Gotham’s sky glow for yourself. I use a Sky Quality Meter (Unihedron) for my research, but there are also various apps you can easily access and use with your Bat-phone (e.g. Dark Sky Meter or Loss of the Night). You can test for yourself the variations in sky glow around your city, and help out with citizen science while you’re at it!

Honestly Batman, you’re known as the Dark Knight. Please at least try to live up to that.

Ellery (2)Ellery McNaughton is a PhD student in the Centre of Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland. Her project will investigate the effects of a city-wide changeover in streetlight technology on urban bird behaviour and ecosystem function. She is supervised by Margaret Stanley, Jacqueline Beggs, Kevin Gaston (University of Exeter, UK) and Daryl Jones (Griffith University, Australia).

Giving two hoots about city birds

Posted by Sam Heggie-Gracie @SamHegGra

It’s not easy being a city slicker; vainly calling over car noise, isolated from my friends in a small patch of forest, narrowly avoiding a cat (I’m allergic; also, see Sam’s post). And that’s just me. Urban birds must navigate these conditions too, and for them, it can mean the difference between life and death. By measuring a number of these pressures, I hope to elucidate which abiotic and biotic drivers mould the avian assemblages of Auckland city for my MSc.

Urban ecology studies are a relatively new area of research, as people around the world are increasingly drawn out of a bucolic lifestyle and into the jobs and excitement that cities can provide. The sprawling city of Auckland spans out from the concrete jungle of the CBD, through a gradient of increasingly green urban and suburban areas and onto rural outskirts. Our bird friends are found throughout, so I will be assessing the difference in bird abundances and composition across this environmental gradient. Additionally, I will be looking into what drives bird composition within urban habitat fragments. By assessing housing density, fragment size, noise pollution and a myriad of other urban characteristics, I hope to determine which of these are most important for providing a suitable home for our birds.

Previously, the words ‘all bird observations will occur between 5 and 9 am’, had filled me with much apprehension, but after overcoming the dread of waking at such an ungodly hour, I have become most earnestly committed to the birds of Auckland city and relish getting up to listen to the beatific morning chorus. Hoot hoot!

Sam HGSam Heggie-Gracie is an MSc student in the Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland. He is investigating the drivers of bird composition in cities. He is supervised by Margaret Stanley and Cheryl Krull (AUT).

There was once an old lady who swallowed a fly…

Posted by Sam Lincoln

Biological systems are incredibly complex (see ecological networks blog). Introducing a spider to eat a fly may not help; New Zealand found that out the hard way with rabbits and ferrets. When one food source is running low, most predators prey-switch, and in New Zealand that often means moving onto our native birds. We regularly control rats both in our homes and local parks with little knowledge of the indirect impacts wrought upon biological systems. My Masters project aims to take a first look at how domestic cats respond to the removal of rats in local parks – are they eating more of our birds?

In Auckland Council’s local parks, a mix of native and introduced birds share their space with predators such as rats and domestic cats. There has been much recent debate about the impact of cats in New Zealand; while scientists agree that cats have negative impacts on our native species, the SPCA often has a far more cat-friendly view citing rodent control by domestic cats as potentially helping birds. Even politicians are involved in the cat debate, with Conservation Minister Maggie Barry in one corner fighting for kiwi versus Prime Minister John Key representing Moonbeam. My pilot study of 11 cameras set for two nights captured 14 individual cats in two local parks (as well as a few possums and an MSc student).

Photos from cat camera pilot study, clockwise from top left: two cats, MSc student Sam Lincoln and a possum. Cats were photographed visiting both parks during the day and night.

Photos from cat camera pilot study, clockwise from top left: two cats, MSc student Sam Lincoln and a possum. Cats were photographed visiting both parks during the day and night.

By assessing the changes to cat behaviour after removing rats from half of the sites, I will get a first look into what really goes on between cats, rats and birds – is rat control bad for birds due to increased predation by cats, or are rats the main culprits in an urban environment? What would happen if cats were to go? Should we instead be moving toward a predator free New Zealand where our birds can exist without either of these mammalian invaders?

Sam Ln web

Sam Lincoln is an MSc student in the Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland. She is trying to disentangle interactions between domestic cats and rats in urban environments. She is supervised by Margaret Stanley, John Innes and Al Glen.

What we talk about when we talk about ecological networks

Posted by Carolina Lara @carislaris

I was recently asked by an engineer friend of mine what my PhD project was about. In my (failed) attempt to put it into simple words, I ended up giving him a large discourse on the topic. A couple of days passed and he got back to me to say “… I always thought biological systems were simpler”. I am new to this world of ecological networks, but simplicity is not a word that can be used to describe them. More specifically for animal-plant mutualistic networks, a set of animals interacts mutualistically with a set of plants that are connected to another set of animals that interact with another set of plants. Animals disperse a plant´s genes and get food as a reward, as in the case of pollination and seed dispersal ecosystem services.

Kereru (Hemiphaga novaeseelandiae), New Zealand’s native pigeon, feeding on Nikau Palm (Rhopalostylis sapida) fruit

Kereru (Hemiphaga novaeseelandiae), New Zealand’s native pigeon, feeding on Nikau Palm (Rhopalostylis sapida) fruit

The dynamics of these networks and how they are built have profound implications on the coexistence of species and moreover, they can give us insights about how resilient they are to human disturbances, such as habitat fragmentation. It has now been recognised that conservation efforts should not only be directed to species alone, but should also be extended to the interactions and networks they form. Loss of interactions would translate into loss of ecological functions and this could happen even before actual species extinctions, a concept known as extinction debt of ecological interactions. Daniel Janzen, a pioneer scientist in tropical ecology, stated more than 40 years ago that “what escapes the eye, however, is a much more insidious kind of extinction: the extinction of ecological interactions”. So, we really are talking about complexity when we talk about networks. And I’m glad I changed my friend´s perception of just how complex biological systems are.

Carolina2Carolina Lara M. is a PhD Candidate within the Centre for Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland. Her research interests focus on seed dispersal networks within fragmented landscapes. She is supervised by Margaret Stanley, Jason Tylianakis, Karine David, and Anna Santure.

SCIENCE NEEDS YOU!!

Posted by Alice Baranyovits @ABaranyovits

New Zealand's native pigeon, the kererū, are important seed dispersers as they swallow fruits whole.

New Zealand’s native pigeon, the kererū, are important seed dispersers as they swallow fruits whole.

Having spent a fair amount of time wandering around Auckland city with a large blue antenna, I have been stopped and asked what I am doing quite a bit. Whilst it was very tempting to tell people I was looking for aliens or just trying to get a good signal for my phone, I did eventually explain to them that I was radio tracking kererū (NZ pigeon; Hemiphaga novaeseelandiae).

Alice radio tracking kererū in urban Auckland.

Alice radio tracking kererū in urban Auckland.

On the whole, people seemed pretty interested and would often tell me about the kererū they see around the city.
This got me thinking, perhaps there was a way I could get people to record this information so I could get more of an understanding of where kererū were in the city and where they weren’t. So I created a website, imaginatively entitled ‘The Auckland Kererū Project’ as a platform where members of the public can record their sightings as well as information on the plants in their gardens.

The use of volunteers in research, also known as citizen science, has long been a tool of ornithologists and ecologists – the Audubon Christmas bird count in the US is one of the longest running having started in 1900. More recently the number of citizen science projects has been increasing, helped in part by the internet and the advancement of mobile technology, which has led to much easier data collection.

One of the main benefits of citizen science is that very large data sets can be collected often over a large geographical area and time scale, much larger than what could be collected by a single researcher. Data can also be collected from private land, removing the access issues researchers often face, especially in urban areas. Participants in citizen science can also benefit through increased knowledge and appreciation of the local biota and issues in their local community and through gaining an insight into the scientific process.

Alice is studying how kererū move around fragmented landscapes and more specifically how they utilise the urban environment.

Alice is studying how kererū move around fragmented landscapes and more specifically how they utilise the urban environment.

There are some drawbacks, however, that must be taken into account during data analysis. Participants often have variable skill levels which can lead to issues with data quality. Variations in sampling effort both in time and space can also be a concern. Despite these issues, citizen science is a great tool and is likely to become even more prevalent in the future.

Want to get involved? There are many citizen sciences projects in New Zealand – one of the largest is NatureWatch NZ, which listed many different projects you can get involved with. Or how about Landcare Research’s annual garden bird survey? But of course don’t forget about the Auckland Kererū Project!

Alice Baranyovits is a PhD student at the Centre of Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland. She is researching the movements of kererū in urban areas and the implications on seed dispersal of native and introduced plants. She is supervised by Mick Clout, Jacqueline Beggs & George Perry.