Walk the Talk: my sustainability journey

Posted by Jacqueline Beggs @JacquelineBeggs

“Not every decision needs to be green Mum” came the aggrieved voice of my teenage son about a decade ago.  I do not remember what prompted the gripe, nor my response at the time (probably something lame, as fathoming the psyche of teenagers was not my best parenting skill). His lament has lingered with me, but here is how I would like to respond now: “Yes, they do – all our decisions need to be green.  The world’s environmental challenges are too dire to start picking and choosing which times we make a green choice and which times we carry on regardless.” To be fair, this same son, 10 years later took time off work to be on the front line of the recent Extinction Rebellion climate change protests in Wellington!

So proud of my 82 year old Mum for joining my two sons on an Auckland climate march.

I was one of more than 11000 signatories on the 2019 World Scientist’s Warning of Climate Emergency. Not only does this highlight the perilous and imminent danger of climate change, but also it outlines six immediate steps we need to take to make a major difference. From reducing the use of fossil fuels and sequestering more CO2, to stabilising human population growth, we need to act now. However, it is not just climate change I’m concerned about; it is the accelerating loss of biodiversity, the intensification of agricultural impacts, the overexploitation of resources, rampant urban development, the pollution of our land and waterways, and the continuous arrival and impact of pests and disease. Many of these issues interact, requiring solutions that are multi-pronged and take a holistic approach. For example, while planting and maintaining trees is critical to reducing levels of CO2, if we focus on planting native rather than exotic species then we also support our native biodiversity.  And if we plant the native trees into a fenced area that forms a buffer between cows and a waterway, then in one step we sequester CO2, enhance native biodiversity and reduce nutrient runoff into our waterways. Perfect!

Despite a lifetime committed to researching and communicating these issues, I have a sense of failure that it has been too little, too late. It is not enough just to keep warning folk of the catastrophic effect humans have on the planet; scientists also need to “Walk the Talk”. We need to demonstrate with personal action that we believe our own data and warnings. Physicist Shaun Hendy led the way in 2018 with a year of no flying, documented in his new book #NoFly.

So, beyond what I do professionally, here are what I consider my top three personal actions to contribute to a more sustainable future:

  1. Reduced intake of meat and meat products. Producing meat is environmentally costly. Humans need to undertake a dietary shift to eat mostly plants and fewer animal products. For me this is a work in progress as I am down to just one or two meat meals a week. My “Not every decision needs to be green Mum” son is now way ahead of me on this with his plant-based diet.
Kung Pow with hemp seeds & coriander; Trading favourite vegan recipes and sharing surplus home-grown fruit and vegetables has turned into a shared family passion
  • Reduce and mitigate carbon footprint. I favour walking where possible (the adolescent in me sometimes jumps onto a Lime scooter), but I mostly commute by bus. Air travel is trickier.  Academics are frequent flyers as we connect with scientists around the globe, particularly when on research and study leave as I have been in 2019. To mitigate my extra travel this year, I calculated the air miles I have travelled (15,000 miles) and therefore the amount of carbon I generated (8000 pounds (3.63 tonnes)) so I could estimate how many trees I need to plant to offset my emissions (240 trees). A local landowner allowed us to fence off stock from a wetland, and to date this year I have planted 47 native trees into this restoration project. Only 200 trees to go!!
Another five trees planted into restoration area before breakfast (top). Delighted to see new growth on puriri planted about a month ago (lower).
  • More environmentally sustainable clothing choices. The pollution generated and resources squandered on clothing is mind boggling. It is complex to calculate the total environmental footprint of textiles, as it needs to include factors such as the pesticides and land used in farming cotton, pollution from manufacture (toxic dyes and other chemicals), waste from discarded clothing, and shipping. Op-shops are my friend as I have transitioned my wardrobe in the last decade or so to predominantly second-hand clothing. Most of my choices are low maintenance items that require no ironing (OK – that is more about laziness than saving electricity by not using an iron) and rejecting fast fashion by selecting items that will stand the test of time.  The current standout is a top my mum made me when I was 17. Technically a “new” item in my wardrobe, but I have been wearing it for 40 years!       

The environmental challenges we face are massive if we want the world to remain habitable for humans and retain biodiversity. For example, to keep global warming this century below 2°C, then we need to reduce our personal carbon footprint to 1.5 t per person by 2050. Around 70% of carbon emissions are actually made by just 100 companies, so is it worth the sacrifice to try to reduce your personal footprint when it is a minuscule drop in the bucket of what is needed? To me yes; everyone needs to engage in reducing their environmental impact, but we also need to demand systemic change away from GDP growth and the pursuit of affluence. Our goals should be to sustain ecosystems and improve human well-being. We need to act now.

Jacqueline Beggs is a Professor in Ecology at the School of Biological Sciences, University of Auckland. She is Director of the Centre for Biodiversity and Biosecurity and leads the Faculty of Science “A Sustainable Future” research theme.

The other side of the world

Posted by Noor Rooding @noorrooding 

I left the Netherlands as winter was finally coming to an end.  Arriving in Auckland I have been able to experience the final glimpse of summer, before it heads into the depths of winter.  Coming from the Netherlands I thought I understood rain… Sadly, Auckland has taught me that there is more to rain than I had realised.

In the Netherlands I study Applied Biology at the HAS University of Applied Science in Venlo. This is a four-year bachelor’s programme and I am currently in my third year. This year I had the opportunity to go on an internship abroad. I contacted Cate Macinnis-Ng and she was happy to get some help with some ongoing projects. This is how I ended up on the other side of the world

I have done some traveling in the past but only in Europe, so going to the other side of the world was a big step. I have been in New Zealand for two months now.  One of the first things that I noticed is the average size of the New Zealander is a little bit smaller than in the Netherlands. But after all Dutch people are just tall, so it shouldn’t be a surprise. Of course, there are more obvious differences like the time difference, climate and nature. One of the major differences that has struck me is how much native bush I see, even when I am in the middle of the city.

I have also enjoyed seeing other parts of New Zealand.  The Netherlands is very flat and does not have amazing things like volcanoes. I had a great experience doing the Tongariro alpine crossing and met some awesome people there. Everyone is so friendly and willing to help you. Someone even took me on a road trip the day after the walk.

As well as having lots of fun checking out your beautiful country I have also been doing some work.  I am working on the litterfall project, which is an ongoing project involving many people. For this I am collecting litterfall material and sorting them into different categories such as species, branches and reproductive material. My main focus is looking at the reproductive cycle of the kauri.  This involves looking at the data to date and seeing if drought has any effect on the reproductive cycle.  I am expecting to see that drought conditions lead to more loss of reproductive material, such as seeds.

Coming to New Zealand has been an amazing experience that I will never forget.  One of my favourite parts of my internship has been getting involved in several other projects. I was lucky to be help with the 24-hour project climbing kauri trees. It gave me the chance to climb these amazing trees and see them up close and personal.

noortrees

Climbing the trees for the 24-hour project

I am here to learn and enjoy my stay in the country and experience as much as possible. If anyone needs help with anything, please feel free to contact me.

noor

Noor is an intern visiting from The Netherlands, working with Cate Macinnis-Ng on ‘The Litterfall Project’.  Contact details: noorrooding@hotmail.com

 

If a tree falls in the forest, and no one hears it…

The demise of long-term population monitoring

Posted by Margaret Stanley @mc_stanley1

“Is there any evidence that an introduced insect – other than a social insect – has caused the decline of a native species in New Zealand?”

A feeling of total frustration and helplessness came over me when I heard those words – while standing before an EPA panel deciding whether to allow a generalist insect predator into New Zealand for biocontrol of a crop pest.

The answer to this is “no”. The frustration comes from the fact that we have no evidence, because there is no long-term monitoring of native insect populations in New Zealand. The Dept. of Conservation (DoC) may have data for a few threatened species (perhaps wetapunga?), but not for common insect species – those that might follow the fate of the passenger pigeon if an additional invasive predator is the thing that tips the balance for that population. The example I gave the EPA in answer to that question was anecdotal – the decline of our native mantis as a result of the invasive South African mantis. There’s certainly no long-term population monitoring that has picked up the demise of the native mantis.

The lack of long-term monitoring for non-charismatic species (e.g. bees) has also been lamented in Europe lately, where a massive decline of insects in Germany over the last few decades has been detected by the Krefeld Entomological Society: a group of mostly amateur entomologists, recording insects since 1905. They have recorded declines of up to 80% since the early 1980s – that’s a lot of bird food (if you care only for vertebrates!).

biodviersity weather station

Plans for long-term biodiversity monitoring in Germany (Vogel 2007)

Changes in science funding over the last few decades, and the vagaries of politics, means that long-term population monitoring is no longer ‘sexy’ and not worthy of funding (‘Cinderella Science’: unloved and underpaid). These types of datasets are difficult to maintain because they exceed cycles of funding and government administration. In New Zealand we now lament the loss of amazing datasets that have provided the foundation and impetus for some amazing science around ecology, conservation and pest control: e.g. the Orongorongo Valley dataset, and the long term monitoring of wasps, pests and birds in Nelson.

beech seed

Seedfall of hinau and hard beech trees in the Orongorongo Valley 1968-1991 (Fitzgerald & Gibb 2001)

DoC and some councils do undertake regular biodiversity monitoring where they can, but on a reduced number of taxa (usually birds and vegetation), not often at a population level (except for threatened species), and the data are often held within these organisations, rather than open access sites. Some scientists also try to sneak in a long-term monitoring project where their (often unfunded) time and resources allow.

Instead, community groups in New Zealand, those groups undertaking pest control and restoring ecosystems, are taking up the slack in long-term ecological monitoring. At least for vegetation and birds, they are the ones undertaking regular and long-term monitoring via vegetation plots and bird counts. There is also the rise of citizen science – with large numbers of people recording biodiversity: counting kereru and garden birds. Although scientists are doing what they can to give community groups technical advice, and make citizen science more robust, will the data being collected be robust enough to understand how disturbance, invasion, and climate change are affecting biodiversity? Community restoration often takes place primarily where people are (close to urban centres), and restoration projects are dominated by lowland coastal forest ecosystems. Hardly representative of New Zealand’s ecosystems.

Needless to say, there was great excitement within the ecological/entomological community with the initiation of NZ’s National Science Challenges. The idea was mooted that we could have a Long Term Ecological Research network (LETR) like that funded by the National Science Foundation (NSF) in the USA. This network of sites provides the research platforms and long-term datasets necessary to document and analyse environmental change. There are numerous papers that summarise the benefits of long-term ecological datasets, such as: (1) quantifying and understanding how ecosystems respond to change; (2) understanding complex ecosystem processes that occur over long time periods; (3) providing core ecological data to develop, parameterise and validate theoretical and simulation models; (4) acting as platforms for collaborative, transdisciplinary research; and (5) providing data and understanding at scales relevant to management (Lindenmayer et al. 2012). Surely gaining an in-depth understanding of New Zealand populations and ecosystems over time would allow us to understand their resilience to the effects of long-term and large-scale drivers like climate change, and even the effects of new invasive species, such as myrtle rust?

However, it was not to be. And although citizen science and community monitoring is valuable in its own right for specific purposes, it doesn’t allow us to respond to the opening salvo.

If an insect goes extinct in the forest, will anyone know?

Postscript: The EPA decided not to allow import of the predatory insect – not so much because the ecological risk was perceived to be particularly high – but the industry benefits were seen as too low relative to the risk.

 

MargaretDr Margaret Stanley is a Senior Lecturer in Ecology, School of Biological Sciences, University of Auckland and is the programme director of the Masters in Biosecurity and Conservation. Her interests in terrestrial community ecology are diverse, but can be grouped into three main research strands: urban ecology; invasion ecology; and plant-animal interactions.

Kauri and drought – What’s their survival strategy?

Posted by Julia Kaplick @julekap

New Zealand’s future climate is likely to be warmer and dryer and the frequency and duration of drought events is predicted to increase. Drought-induced tree mortality is increasing world-wide, with several instances also reported in New Zealand. So far we know very little about the drought vulnerability of New Zealand forest trees, but due to our research on kauri we are beginning to understand more and more about the drought survival strategy of this forest giant.

20161013-IMG_3325.jpg

Roots

The roots are integral for trees to extract water from the soil and a good root network is crucial for drought survival. During times of water stress many trees, including kauri, invest in root growth. This allows them to keep up their normal transpiration levels for a little longer. So far it is assumed that kauri roots are very shallow, but sap flow measurements during the 2013 drought suggest otherwise. The upper soil layer during that time was extremely dry, but the trees still used water which suggests that kauri roots must reach a lot deeper than we previously thought allowing access to deeper water stores.

20160831-IMG_6111.jpg

Kauri roots

Drought avoidance or toleration?

In general, every tree species falls somewhere on the spectrum between drought avoidance and drought toleration. Drought tolerating trees keep up transpiration as long as possible. Drought avoiding species on the other hand start closing their stomata to reduce water loss, when the soil moisture goes down. Both strategies have their downsides. Drought tolerators risk the formation of little air bubbles (xylem embolism) in their conducting tissue. This can lead to hydraulic failure if a drought lasts too long. Drought avoiders protect their hydraulic integrity but risk starvation, because the closure of the stomata also means a reduction of carbon intake. Kauri are clearly drought avoiders. Even under ideal growing conditions kauri are conservative water users, closing their stomata early in the day. They are known to be very susceptible to xylem embolism and protect their hydraulic integrity in that way.

20160325-img_2824

Kauri cone in a bed of leaf litter

Leaf shedding

During the 2013 drought the kauri in our study plot lost a substantial amount of leaves and twigs. The reduction of leaf area is an effective way to reduce the water-losing surface and consequently the reduction of transpiration and the need for water uptake.

20161223-img_6441

Base of a kauri stem

Water storage

All components of a tree (roots, stem, branches, leaves) can serve as water storage compartments. This is a drought survival strategy that succulents have perfected. Kauri make use of stored water on daily basis. Water is withdrawn from the stem and branches in the morning when the water starts to transpire from the leaves. During the afternoon and night these stores are refilled again. The massive stem volume paired with deep sapwood seem to make a great water store. During prolonged drought conditions kauri should be able to use the water reserves to their advantage. This is something we are investigation right now, stay tuned.

photo_julia

Julia Kaplick is a PhD student in the Centre of Biodiversity and Biosecurity, School of Biological Sciences, University of Auckland. She is researching the response of native trees to seasonal variation in climatic conditions using measurements of sap flow, water relations and carbon allocation. Julia is supervised by Cate Macinnis-Ng (University of Auckland) and Mike Clearwater (Waikato University). Julia is supported by funding from the Marsden Fund.