Turning the black swan white: lessons from ‘Black Swan Theory’ on identifying and mitigating risks through collaboration

Posted by Rebecca Lehrke @rmlehrke

It would be pretty catastrophic – albeit unlikely – for a fire to sweep through your lab destroying all your research with it. On the other hand, forgetting to save the paper you are working on and so losing the last few hours of productivity, though slightly less painful, probably happens quite frequently to the best of us. Both events carry risks and have the potential of occurring. So which event is more important to prepare for or could collaboration remove the need to decide?

Understanding the balance between the probability of an event occurring and its consequence is important when managing wildlife. Take my current research topic for example – bird strike by black swans. Sparrows hit planes on a daily basis, but their impacts are usually minimal. Black swans on the other hand rarely hit planes. The difference is, when a black swan hits a plane the impact is equivalent to a Holden Commodore VE Sedan hitting a brick wall at least 15km per hour. This kind of impact can destroy a plane’s nose cone costing over $25,000, let alone the risks if it enters an engine. So what event should we be most concerned about?

Swan

Black swan (Cygnus atratus) pair with cygnets at Ambury Regional Park, Auckland.

Unfortunately, there usually aren’t simple answers to balancing risks, and in conservation biology, the survival of a species could be on the line. If we ignore high-risk but low-probability events an endangered species could go extinct because a 100-year storm event wipes out the last breeding pairs on an island. On the other hand, ignoring day-to-day impacts of resource supply could also lead to its extinction over time.

black_swan

“The Black swan: The impact of the highly improbable” book cover.1

Economics has a long-standing concept that conservation and biosecurity managers could be using in these situations – Black Swan theory. According to Taleb ‘Black Swans’ are events that are unexpected, high impact and can often be explained or predicted in hindsight. Just like that 100-year storm event. Taleb warns that we could waste a lot of time – and money – trying to predict all these ‘Black Swans’. Instead our management plans should be robust enough to mitigate the negative impacts of unexpected events.

Although examples of such contingency plans being used in management programmes exist, it is often on an ad-hoc basis. This is where collaboration and synthesis across disciplines comes in. A devastating 100-year storm may not be common but if you know it is a natural part of the system, you can reduce its impacts, whether that means splitting your population across multiple islands or some other contingency plan.

As ecologists and managers we should always be discussing our study systems with our peers in different disciplines. As Taleb puts it, what the turkey may not see coming the butcher probably does. So let’s be the butcher not the turkey! Get another perspective, share knowledge and collaborate more often. It may not prevent a fire from sweeping through your lab, but seeing your lab from a fireman’s perspective might help you ‘identify’ these risks so you can ‘mitigate’ them by backing up off-site more often. Thus reducing the impacts and “turning the Black Swan white”1.

Turkey

Being the butcher, not the turkey. Retrieved from: http://bit.ly/1pn1vte

Rebecca

Rebecca Lehrke is an MSc student in the Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland. She is using movement ecology to assess the efficacy of disturbance-based management of black swans at the Auckland Airport. She is supervised by Todd Dennis and Margaret Stanley.

  1. Taleb, Nassim Nicholas (2007), The Black Swan: The Impact of the Highly Improbable, Random House, ISBN978-1400063512

 

Advertisements

The adventures of a roboswan: Using technology to collect ecological data

Posted by Rebecca Lehrke @rmlehrke

Hello there, today I would like to introduce you all to my friend S5, the roboswan.

Not S5: but even I’ll admit S5 looks a lot like S7 (shown above) so you get the idea

Not S5: but even I’ll admit S5 looks a lot like S7 (shown above) so you get the idea

Yes I know that name is not very creative but I’m sure this bird will still peak your interest. S5 is not like other birds of its kind. Unlike other swans in my study, S5 likes to travel, likes an adventure. At the exact moment I am writing this (from the comfort of my home), I am also checking on S5, and yes, this swan is still on its adventure, hanging out in a freshwater inlet near the Manukau end of the Auckland Airport. S5, like all the birds, in my study are special. They all have remote-download GPS tracking devices attached to them. This means I can see where they are every five minutes.

The adventures of S5 - the live feed of GPS locations for S5 in the Manukau Harbour shown through an app on my phone

The adventures of S5 – the live feed of GPS locations for S5 in the Manukau Harbour shown through an app on my phone

It’s not often that as an ecologist you can check in on where your study animals are from an app on your phone while you write a blog post in your lounge. As I have explained in a previous blog post my research involves using tracking devices to look at how the movement and location of black swans changes in response to management at the Auckland airport.

I have had the opportunity to work with some pretty amazing, and cutting edge technology for this study. We are using remote-download GPS tracking devices, which allow me to get a continuous stream of movement data on a number of swans around the airport. It is certainly fascinating and insightful already and we have only just started getting data.

Of course with great power comes great responsibility, so they say. Now that I have my data coming in, I have to start analysing it, and there’s a lot of data to work with! But at least I can check in on S5 each night and imagine what adventures its had while moving around the harbour.

A lot of data - raw GPS locations from less than a week for my eight study birds in the Manukau Harbour

A lot of data – raw GPS locations from less than a week for my eight study birds in the Manukau Harbour

RebeccaRebecca Lehrke is an MSc student in the Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland. She is using movement ecology to assess the efficacy of disturbance-based management of black swans at the Auckland Airport. She is supervised by Todd Dennis and Margaret Stanley.

Controlling the Roboswans: technology and adaptive management

Posted by Rebecca Lehrke @rmlehrke

In conservation ecology we are taught from very early on the importance of adaptive management. We learn that the scientific process is cyclical; it doesn’t just stop once you put out some traps or feeders. It is not enough to just put our management strategies into action – we should always assess and improve them. Often this is actually the most interesting part of a project. We all know that ecological systems are complex and respond to change in so many different ways (see both Sam and Carolina’s previous blog posts if you don’t believe me). How a system, population or even individual organisms respond to management can be fascinating and extremely insightful.

Adaptive management approach

Adaptive management approach

For my masters I am looking at two parts of this question – how do individuals and populations respond to management interventions? This on its own is really nothing new; conservation managers all over the world assess the efficacy of their actions. Pest controllers undertake bird surveys to determine whether the populations are bouncing back, researchers assess changes in invertebrate diversity following reforestation projects, just to name a few. What is different in my research is the use of the fine-scale data made possible by modern technology.

Roboswan Taxidermy black swan with GPS tracking device

Roboswan Taxidermy black swan with GPS tracking device

I will be using GPS-tracking technology to investigate how black swans respond to disturbance-based management actions  at the Auckland Airport. Put simply – and much more interestingly – the airport staff regularly chase the swans with a modified Jet Ski away from areas close to the runway. Black swans are a big bird, averaging around 5kg, they are not something we want hanging out anywhere near our runways. Managing this population is critical to airport safety in Auckland. To better understand how these birds respond to this management intervention, and how it can be improved, I will be collecting GPS-fixes at one-minute intervals during and following interventions by airport staff. These data will allow us to inform managers about the outcomes of their intervention; such as how frequently they should disturb the birds; at what times the swans pose the highest risk of bird strikes; and how the disturbance affects swan behaviour.

Black swans taking off during a chase by Auckland Airport staff

Black swans taking off during a chase by Auckland Airport staff

The use of technology in adaptive management projects, such as this, provides us with unprecedented detail about the way organisms respond to changes in their environment. For example, PIT-tagging birds around feeders can show us everything from how often they use them and when they use them, to whether a feeder is optimally positioned. There have already been a huge number of studies using tracking-technology that have changed the way we think about how and why animals move. These technologies are only getting more efficient, smaller and cheaper in time. More regular integration of data-capture technology into our adaptive management programmes could greatly improve their outcomes. If you’re still not convinced and you need to see another example of all this in action – watch this space, it is sure to be insightful and will no doubt be fascinating.

RebeccaRebecca Lehrke is an MSc student in the Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland. She is using movement ecology to assess the efficacy of disturbance-based management of black swans at the Auckland Airport. She is supervised by Todd Dennis and Margaret Stanley.